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THE ENTRY OF A WEDGE INTO AN INCOMPRESSIBLE FLUID'$ 

B.S. CHEKIN 

The similarity problem of the entry of a rigid wedge into an ideal 
weightless incompressible fluid occupying a half-space is studied. The 
difficulty is that a non-linear boundary conditon has to be satisfied on 
the free surface of the fluid, whose position is unknown and has to be 
found during the solution. Three types of fluid motion are considered: 
flow past the wedge without break-away, the case when one wedge face is 
not wetted (a semi-infinite plate), and the intermediate case, when a 
cavity forms on one face. The problem amounts to solving a non-linear 
system of integral equations. A method of solving this system is given 
for the flow without break-away and the plate case. Examples of 
calculations are given. The results for thin and thick wedges are 
compared with approximate data. 

The penetration of a wedge into a fluid was first studied in /l/. 
In /2/ the linear problem of normal collision with a water surface was 
solved. An approximate solution can be found e.g., in /3-5/. In /6/ a 
solution was obtained for the special case the entry of a wedge into a 
fluid. In /7/ the problem of normal wedge entry was solved in the exact 
non-linear statement, and the same problem was considered in /8/. The 
method below is based on that of /7/. 

1. Let the wedge M,fif,M, move with constant velocity V, (Fig.11 and enter a fluid 
which occupies the lower half-space )' -< 0 at the initial instant t=o and is at rest. 
At an instant t> 0 the distorted fluid boundary N,M,M,M,N, can have the shape shown in 

~fPrikZ.Matem.Mekkan.,53,3,396-404,1989 
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Fig-l. We call the sections N,M,, and M,N, the free boundaries (FB), since we require 
that the pressure on them be zero. The sections M,Mz* and MzMg which are the sane as 
the wedge faces will be called the unpenetrated boundaries VJB). We show in Fig.1 the angles 

al, a3 and p, which characterize the wedge orientation in the space and the direction of 
the vector V,. 

In Fig.1 we show only one of the possible types of fluid motion, that corresponds to a 
certain relation between a,, a3 and p, when there is no jet break-away from the rib M,. If 
this relation does not hold, then break-away occurs, and there are two possible types of 
motion. One is shown in Fig.2, when one face is unwetted, which corresponds in essence to 
entry into the fluid of a semi-infinite plate or a wedge with a fairly small angle x = a3 - 

al* The third type of motion is shown in Fig.3. A cavity is formed on one face. This type 
can be regarded as intermediate between the first two, and is obtained when the above 
relation between the angle at, a? and p, needed for there to be no break-away, is 
violated for fairly small variations of a,, ci3 and p. 

2. Assume that the fluid motion is potential. We can then introduce the harmonic func- 
dot-2 @ (Xv y, tX which is the particle velocity potential v = C@. The Lagrange integral 
gives the expression for the pressure P =--p,,(8iVat+ j/2/2), where p,, is the density. We 
have a similarity problem. We introduce the dimensionless similarity coordinates r = R/(V,f), 
where R is the position vector with the components X, Y. Denote the components of the vector 
r by 5, y. We introduce the dimensionless velocity potential $(x, ZJ)-_ @/(tl/,?), the velocity 
v = vtv,, and the pressure p = P&~,li,~~). Then, v .r: 'II;, In the new variables the 
Lagrange integral, and the kinematic condition, which amounts to requiring that the FB con- 
sists of the same particles, can be written as 

where v is the normal to the boundary. Since we must have vv = rav = rv, on UB, where r2 
corresponds to the point && then Eq.(2.21 holds, not only on FB, but also on the entire 
fluid boundary. 

Fig.1 Fig.2 

Fig.3 

Let T be the domain occupied by the fluid in the x9 plane, Fig.1, and s the boundary 
arc length, measured from a fixed point. We assume that s is increasing if, as we move 
along the boundary, the domain T is circuited counterclockwise. Let s be the unit vector 
tangential to the boundary. Then, s = drfds = r' (s), where P (s) is the position vector of 
the boundary point. Differentiating (2.1) with respect to s, we obtain on the FB, noting 
that p'(s) P: 0, 

v' (s)(r - v) = 0 (2.3) 

We can write (2.2) and (2.3) as the single vector expression 
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where r0 corresponds to a fixed point on the FB. It is clear from 12.2) and (2.3), thdt 
the vector r - v is directed along s, while U'(S) is orthogonal to s on the FB and is 
directed along s on the UB. 

3. We introduce the complex plane z I $- iy and the complex velocity 1. i', ~~ //'!/. 
Following /7/, we also introduce a complex plane ill u (- 5;. Let II' ,I: (z) map conformally 
the domain T into the upper half-plane Im lr*l, 0. The boundary of T maps one-to-one onto 
the real axis Im u' 0. By Riemann's theorem, this mapping exists. The function z(i(') 
maps conformally the half-plane lmrr*) U into the domain T. Under this mapping, boundary 
points Mi (i 1, 2, .) become points IL, on the real axis Irn~(~ I). two of which can be 
chosen arbitrarily. 

We write the function Z'(V) as 

2' ((1.) 0~0 (u:) e'*C"): 0 : const > 0, (0 (f(,) ,,- () 

where S(u) is the angle between the x axis and the vector s, measured counterclockwise from 
the x axis. We also introduce the angle H(u) ;[ -S(u). Obviously, we must have 0 (u)+U 
as ~~~-00. Since the function 

i 111 (cc%’ (a)) = i In (aw (w)) T Cl ((I') 
is analytic in the half-plane Irnlo.3 0 and takes real values N (u) on the axis Imtr' 0, 
then Z'(IU) can be written in terms of fj (u) : 

Letting i/l - Ll and using Plehmel's relation, we have 

The integral in (3.1) has to be understood in the sense of the principal value. When 
obtaining (3.1), it was assumed that 8 (u) is piecewise continuous and bounded, and satisfies 
Hb;lder's condition onevery part of the ?A axis where it is continuous. The function o(u)-1 
as IUI'OD, and can either vanish or become infinite as u+ u,. These singularities 
have the form 

where n6, is the angle through which the vector s rotates in the neighbourhood of the 
point Mi (Fig.lJ, where Si> 0, if s rotates counterclockwise at a boundary break point. 
The vector s has the components S, --cosH, sI = sine. 

For the complex coordinate of the boundary we have 

where the angle 0 is known on the pieces of the UB. 
We introduce the function, analytic in the half-plane Im w>O : 

x (II') = 2' (ID) V' (4 
Hence 

(3.2, 

On the real axis Im w = 0 we have 

From (3.3) we have 

(3.3) 
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x (u)_= aw (u) v’ (IL) (8 f iv) 

It follows from this relation that the function x(u) is real on the UB and imaginary on the 
FB. Using (3.3), it can be shown that condition (2.2) holds on each piece of the UB if we 
require that it holds at just one point of the piece. 

Apart from (3.31 for the velocity on the FB, we also have (2.4). On writing (2.4) in 
complex form and equating the right-hand side to the right-hand side of (3.3), we find that, 
on each piece of the FB. 

(the bar over z denotes the complex conjugate quantity and u0 corresponds to a fixed point 
on the piece of the FB). Differentiating (3.4) with respect to u, on each piece of the FB 
where the angle 6(u) is continuous, we obtain 

It can be shown that Eq.(3.5) is equivalent to (3.4), if we require that condition (2.2) 
hold at just one point on the given piece of the FB, e.g., at the point u = uO: 

v (%) [v (&I) - r (u&l = 0 (3.8) 

Thus, on any piece of the boundary, whether the FB or the UB, condition (3.6) must hold at a 
point u = uO. Condition (2.2) must then hold on the entire boundary and 

p' (u) = 0 (3.7) 

on any piece of the FB. 
For all three types of motions 1, 2, 3 (Figs.1, 2, 3, respectively), we require that, on 

the free fluid surfaces, we have 

We write the pressure as 

p(u) = 0 on FB (3.8) 

p (w) = Re 'p (w) - ‘/,V (w)v (w) 

q(w) = z (W) V (PO) - f v (z) 2’ (T) cl? 
m 

(3.9) 

It follows from (3.2), (3.7) and (3.9) that the functions V(W), ‘p (w), analytic in the 
upper half-plane Imw>O, vanish as w-+00, and condition (3.8) holds automatically for 
the types of motion 1 and 2. In the case of type 3, condition (3.8) will also hold provided 
that we require that the 
e.g., at the pointM, 

A further condition 

M*M,. This condition 

pressure be zero at a point on the free boundary MzMl (Fig.3), 

P (4 = 0 (3.10) 

must hold for type 3: the point Al, must actually lie in the face 
can be written as (vz3 is normal to face M,M,) 

vJo(t)s(t)dt = 0 
UP 

(3.11) 

Notice that, by relations (3.4) and (3.6) and the continuity of V (~1 we have 
Y (u) + 0 as IZJI+OO and vi = ri at boundary break points, where hipO, e.g., at 
Points M,, M,. 

4. The function x(w), which is analytic in the half-plane Im w>O, and takes real 
values on the pieces of real axis Imw = 0 that correspond to the UB, and imaginary values 
on the pieces corresponding to the FB, can be found for our three types of motion. When 
obtaining x(w) we took account of the following: the velocity V(u) is continuous, the 
function on the right of (3.51, and also the function o (IL), x (u)/o (u) are integrable, 
0 (tL' 0 as lul-+ 00, the pressure p(r~)+O as w-b CO, the pressure on the UB is 
not negative, and any two boundary break points cannot be ends of the same piece of the FB. 
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This follows from the equation v c at these points, and relation (2.4). 
We find: 
for type 1 

II (I(') ---;/, (I(, --- U,)-"* ((1. - 11:,)-% 

for type 2 

where, in this case (Fig.21 it turns out that the 
.M, and the FB must necessarily have a break at a 

for type 3 

- up (zr - ua) 1 

ansle 0 (ut is continuous at the point 
point .M; (8, > 0); 

x (IO) = --ib [(w - u,)(w - u,)(w - UJp (w - uz)y/? >: 

(b, + b,w + fL+) 

where b, b,, b, are constants. As in the case of type 2, there cannot be a boundary break 
at the point M,. 

cuts of x (UJ) , analytic in the half-plane Im zu>C, must be located in the half-plane 
Im 10 < 0, and when U=%&, we put Im x (u)< 0. 

Since the above-mentioned functions are integrable, we have the following bounds on the 
wanted angle e(u): 

3si4 - cE, <B (u, -O)<n: - a,, $!a (S, <1 (types I, 2, -9) 

-aa<O(u, -C O)<nX -as. 3/,<(T3<1 ftyws 2, 3) 

x/2<@ (ua - 0) - 0 (uQ + O)<n, f/g<83 < 1 (type 2) 

3~14 - a, ( 0 (u, - 0) - n < n - ag, 3!4 < 6, < 1 (type 3) 

It can be shown that the pieces of the FB that depart to infinity cannot have points of 
inflection, and lie entirely in the half-plane y>O. We have the asymptotic relations as 

Ju I -+a, 

0 (u) -+ -bbi(3aZu3), y (u) --f b!(Bat?) 

r; (u) -* -b*~(~5ff3f~). Py (u) + 642at4 

In these relations the parameter u can be replaced by -x/a. 

5. Consider the types of motion 1, 2, 3. We use the notation 

c _ b/a", 5 (u) 7~ j x (u) lib, 11 (u) = sign (b, -I- b+ -t 4 

The function O(U) must be expressible in terms of Q(u) by (3.1). 

Type 1. We write Eqs.(3.5) as the system of integral equations 

e (u) = I, (- rn,U), u < "r; e fu) = I, (26, a$, u> Ua (5.1) 

Let ui = -1, ua = 1. We then have four relations of the type (3.61, in which, e.g., we 
put U0 = "I- 0, u,, = u1 + 0, u0 -u8 - 0, u0 = uQ + 0. The resulting equations can be used to 
find up, a, b, and a relation between the angles a,, a,, p. For instance, if we fix a,, ag, 
we find from these equations uz, a, b , and the angle p at which the type of motion shown in 
Fig.1 is possible, when there is no jet break-away from the wedge rib. 

Type 2. The angle (j(n) satisfies on the three parts of the FB (Fig.2) the equations 

9 (U) == J, (- M, U), u < u,; 0 (u) = I, (uz, u) - a,, 1L2 < U _( UQ 

6 (U) = 1, (U, co), U > Ua 

Let at = -1, a3 = 1. Noting that the angle 13(u) is continuous at the point u -= L+, 
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it can be shown that there are then only three independent equations of type (3.6). These 

equations can be used to find up, a and b. 

Type 3. For the angle 6(u) on the three pieces of FB (Fig.3) we obtain 

We put U1 = -1, us = 2. For the six unknown constants u2,up, a, b, b,, b, we have six 
equations: 4 independent Eqs.(3.6) (note that the angle O(U) is continuous at the point 
M2), and (3.10), (3.11). 

These equations involve jet break-away from the left face of the wedge. If the relations 
between the angles a,, c(~, p correspond to jet break-away from the right face, we can use 
our expressions by replacing these angles by n - a3, n -a, and -B respectively. 

6. We will suggest an interative process for solving these equations in the case of 
motions of types 1 and 2. We regard the solution as being obtained if the process converges 
when realized numerically. We will describe the method for the simple example when the wedge 
enters the fluid normally, and a,+ c+= n, b== 0. We can then put u,=~,u,= -1, u%= 0, and 
there are only two independent equations of type (3.6) (from which a and b are found), while 
instead of system (5.1) we have the single equation 

where G(U) is a continuous function, which depends on 0 (u). and CL is half the angle of 
the wedge. We isolate the singularity in the integrand on the right of (6.1), the nature of 
which depends on the solution (depends on 0,). 

Let the n-th approximation O,(U) be known. The (nf I)-th approximation is then 
found as follows. The quantities G(U) and c are calculated from the n-th approximation, 
while O,,+r (u) is found by solving the equation 

Putting u = 1 in (6.2), we arrive at the equation for On+l(I). Its solution, which 
satisfies the necessary inequality n:4+ a<O,+,(1)<niZ+ ~1. exists. 
and hence 6,+1, we obtain On+1 (U) by integration from (6.2). 

Having found On+l (1) 
The first approximation 

@1 (u) can be found by putting G(U)= 1 in (6.1). 
In the case of motion of type 3, it is difficult to use this method, since it is not 

possible to prove that the equation of type (6.2) with U==l has a solution that satisfies 
the appropriate inequalities. 

7. To sum up, there are three types of motion. It has been shown above that motion 
without break-away (type 1) can only exist when there is a certain relation between the angles 

al, aSr and (-3. We can always write this relation as 

Ysh = f (x7 B) 
Y, = n/2 - al + fi, yS = ag - n/2 - 8, x = Y1 + Y3 

(7.1) 

The angles Y1, Y3 are shown in Fig.1. The line OM,, which coincides with the wedge 
velocity VW, must divide the wedge angle x into two parts Y1 and y3, such that there 
is no jet break-away from the rib. 

In the case of normal wedge entry (B = 0) we have Y1 = Y3, and f (x, 0) = 1. In 
general, f (x, B) is now known in advance and its value for the given x, B can be found 
only while solving Problem 1 (type I). On fixing x and performing calculations for dif- 
ferent B, we can plot f(%, fi), i.e., a curve in the (ys/yl, B) plane. 

We show such a curve 1 in Fig.4 for x = 0.21-c , with 0 < B < n/2. The points of the 
plane which lie below this curve correspond to jet break-away from the left 

points above the curve correspond to jet break-away from the right face. If 



these points are sufficiently close to the curve (7.1), we have motion of type 3. Curve A 
in Fig.4 is plotted for x 0.04n , and curve 3, for an infinitely small angle it. This 
last curve was obtained from approximate linear theory, which takes no account of the lift of 
the free fluid surface. 

In the case of break-away motion, it is again impossible to indicate in advance the 
limits to be imposed on the angles 'I,. an. fl. such that either type ;! or type 3 motion is 
seen. These limits can only be found while solving the problem. Given any a,, tlg. fl, we 
can always find the type of motion that corresponds to these angles. Fix I*,, [j, For a 
sufficiently small wedge angle x, there is a type 2 motion. On solving Problem 2, we find 
the wedge angle x =x* for which the point M, lies on a face (Fig.2). With (J -1 x <x*, 
we have type 2. Solving Problem 1, we find the angle x 55, that corresponds to motion 
without break-away (type 1). With x*i;x.<X we have type 3. With x‘]X , there is 
motion with jet break-away, but from the other face. 

Fig.4 Fig.5 

Fig.6 

Consider a specific example. Let a, = 0.6 I-C, fi = 0.25~. Calculations give x* == 0.13111, 
X = 0.235~. we have types 2, 3, 
1 respectively. 

Thus, with 0 -( x < o.l31n, 0.131~~ < x < 0.235n, x = 0.235n, 

8. Let us give some theoretical results for motions of.types 1 and 2. Here, s is the 
distance along the face from M*; s>O refers to the right face, and S<O to the left 
face. Table 1 gives, for normal wedge entry, the dependence of the force F on the wedge 
half-angle CL: 

F&IS, 
II 

where F acts on a face, the pressure on the wedge rib is pw = p (0), and the angle pn := n --a~?&. 
In /8/, where the calculations were made for a= nl4, the quoted data are p= 0.020, F, = 

2F sin a = 3.40. From Table 1: p = 0.021, and F, = 3.45. 
Given sufficiently large a, the maximum pressure Pm is greater than pII>. For instance, 

with CL = 0.4s , we have pw = 4.24, pm = p (4.92) = 11.2. In the last column of Table 1 we give the 
force F = F,. calculated from the approximate expressions. The first four rows of this 
column refer to a thin wedge, and the last to the results calculated from the expression in 
/l/ for a blunt wedge, allowing for the lift of the free surface. It can be seen from Table 
1 that, for a<l, the pressure pw is well described by p,,,= 0.5+2ln2.&, which was 
obtained in /5/ for a blunt wedge. 

The disturbed fluid surface shape is given in Fig.5 for a,= 0.35n, a3= 0.85~. 
at which there is no jet break-away from the rib is f, = 0.153n. 

The angle 
For the angles which define 

the surface breaks at the points M,.M,, we have n (1 - 6,) = O.O358n, II (1 - 6,) = 0.0083s. 
The continuous curve of Fig.6 is the pressure distribution on the faces M,M,, M,M,. The 

forces on these faces are 
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% 
’ F, = 

s 
p(s) ds = 1.55, Fs = p(s) ds = 3.62 

0 -3 

The modulus of the derivative Ip’k)I increases without limit as we approach the rib. 
In general, as s-0, we have Ip'(s)1-% for a wedge angle x<Zn,3, and p' (s) - (I for 
x > 2n.'3. 

Table 1 

wn 

0.001 
0.005 
0.01 
0.0s 
0.1 
0.2 
0.3 
0.35 
0.4 
0.45 

F 

0.140.10-2 
0.725.10-2 
0.151.10-' 

0.103 
0.289 
1.26 
4.86 
10.62 
28.8 
136 

0.501 
0.507 
0.514 
0.581 
0.688 
1.05 
1.82 
2.61 
4.24 
9.1 

0.102 
0.964.10-' 
0.926. IO-' 
0.715.10-' 
0.536.10-1 
(J.%?,.iO- 
0.138.10-' 
0.820.10-2 
0.400.10-a 
0.110.10-' 

- 

- 
F. 

0.139.10-1 
0.693.10-z 
0.139.10-' 
0.693.10-l 

156 

Consider a plate with a, = 0.2n, fl= O.ln. In Fig.2 we show the fluid surface shape; 
broken curve in Fig.6 is the pressure distribution P (s) along the plate. The force 
on the plate is 

1. 

2. 
3. 

4. 

5. 
6. 

7. 

8. 

F = p(s)ds =4&i 

3 

At the point S=O the derivative P’ (4 has a singularity of the type i/l/T, 
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